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Abstract—The effects of constant and radius-dependent translational bubble velocity on the collapse
rate of a single bubble in a single and two-component system, either pure or containing non-condensables,
are analysed and compared. A quasi steady-state in a potential or modified potential flow field is assumed.

An attempt is then made to analyse the combined effects of bubbile rise velocity and main stream cross
flow in forced convection surface boiling in slightly subcooled water. The results are in excellent agreement
with available experimental data for most of the condensation process. Ideas for farther improvements
are explored, and a general framework for analyzing bubble collapse in a flow field has been suggested.

NOMENCLATURE T*, saturation temperature corresponding
velocity ratio, equations (6) or (17); to P*;
constant, equation (9); T, temperature, wall ;
specific heat capacity, continuous T,, approach continuous phase tem-
phase; perature;
Fourier number (xt/R2) or (at/R2); t, time;
density ratio, dispersed phase, (p./p,); ts time, complete condensation ;
heat-transfer coefficient ; U, relative vapor-liquid velocity;
Jacob number [pC(T* — T,)/Ap,)]; U,, bubble free rise velocity, radius
velocity factor; dependant ;
thermal conductivity, continuous U,, bubble free rise velocity, constant;
phase; U, perpendicular,  horizontal  bulk
Nusselt number [2Rh/k]; velocity ;
system pressure corresponding to T*; U,, rise velocity of bubble of radius R,,;
Péclét number (= 2RU/a); Upsxs maximum relative velocity [=(U2
Péclét number (= 2R U,/a); + UdY;
Péclét number (= 2R, U, /o); Vs horizontal to (constant) vertical velo-
Prandtl number, continuous phase ; city ratio, (U,/U,);
instantaneous heat flux ; Yoo initial concentration on noncondens-
radius of bubble (= R(r)); ables, mole fraction.
final radius of the bubbles;
initial radius of bubble ; Greek letters
maximum bubble radius, after o, thermal diffusivity, continuous phase ;
detachment; B, dimensionless radius (R/R) ;
radial velocity (= dR/d?); B final dimensionless radius (R,/R);
specific gas constant ; A, latent heat of evaporation, dispersed

temperature ;
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phase;
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g, dimensionless temperature (T — T,)/

(T* - 1)

B, dimensionless wall temperature

2, density, continuous phase;

Pr. density, liquid, dispersed phase :

P density, vapor, dispersed phase;

T, dimensionless time, equation (6);

Tgs running dimensionless time, pure
vapor condensation;

T4 running dimensionless time, correc-
tion due to inerts;

THs dimensionless time, equation (2);

T4, final dimensionless condensation
time.

INTRODUCTION

BuBBLE dynamics in stagnant, subcooled, liquids
were investigated, experimentally [1-4] and
analytically [5-8], but mainly, in non-flow
systems. An experimental and theoretical study,
based on an integral approach to the governing
conservation equations, on the condensation
of an injected steam bubble attached to
the nozzle in subcooled water was reported
recently [9].

Comparatively, little has been reported on the
effect of the relative motion of the vapor
bubbles and the continuous phase on bubble
growth and/or collapse rates. Photographic
studies of surface boiling in forced convection
flow of highly [10] and slightly [11] subcooled
water were reported. These, however were
usually analysed by the non :flow “assymptotic”
solutions for heat-transfer-controlled bubble
growth and collapse, represented by [8]:

Rl -

where R and R, are the instantaneous and
initial bubble radius, respectively, and
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where T* denotes the saturation temperature at
the pressure of the system and T, is the bulk or
approach temperature.

The effect of the translational velocity of a
bubble on the collapse rate was studied theore-
tically by Clark et al. [12], experimentally and
theoretically by Wittke and Chao [13] for a
single component (steam—water) system and by
Sideman et al. [14, 15] for the more general case
of two-component (say, pentane in water)
system. These works deal with relatively large
{Ro > 1-0 mm) bubbles and, assuming a con-
stant rise velocity in a potential or modified-
potential [14] flow fields, present a numerical
solution for the unsteady-state energy equation.
These solutions, though exact, are relatively
complicated and an approximate but general
analytical solution, encompassing single and
two component systems, including the effect of
non-condensables, was recently reported [16].
This general solution, more recently extended to
single {17, 18] and multi-train bubble systems
{19], was obtained, similar to Ruckenstein’s
[20, 21] analysis of the effect of translational
bubble motion on bubble growth, by assuming
quasi-steady state and a potential—or modified
potential—flow field. The general expression is
given by

2
Jr
where Nu =2Rh/k, Pe = 2RU/a and k,, the
velocity factor by which the potential flow solu-
tion for flow around a sphere is ‘transformed’ to

yield the average heat flux that would be
obtained in a viscous flow field, is given by [15].

k, = 025Pr=% @)

for a two component system and k, = 1 for a
single component system.

1t is important to emphasize at this point that
equation (3) was derived under quasi-steady
state conditions (Pe > 1 and R < U) and is
limited to Pe » Ja [21]. Here R, the radius, U,
the relative (vapor-liquid) velocity and h, the
heat-transfer coefficient, denote instantaneous

Nu = —(k, Pe)* 3
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values prevailing in a given system at a given
instant.

Whereas large (04 > R, > 02 cm), bubbles
exhibit constant rise-velocity [22], this work is
an .attempt to analyse the effect of the radius-
dependent rise velocity associated with relatively
small bubbles. Also, with reference to the
experimental data of Abdelmessih [11], an
attempt is made to analyse the effect of fluid
velocity on bubble collapse in slightly subcooled
water.

It is perhaps relevant to note in this connection
that the numerous studies associated with
forced-convection-boiling incorporate the over-
all effects of boiling and forced convection and
are therefore outside the scope of this paper.

THE COLLAPSE HISTORY

Rewriting equation (3) in terms of the
instantaneous heat flux, ¢, and the local tem-
perature driving force AT = (T,, — T,), where
T,, is the wall temperature of the bubble, and
equating with the flux obtained by a simple
energy balance at the wall of the collapsing
bubble, i.e. ¢ = iRp,, yields

. kAT [2Uk,1*
R=- Dot [mzR] ©

where U is the instantaneous relative vapor—
liquid velocity.

We now define dimensionless parameters
with reference to a single bubble of radius R,
rising freely in an infinite expanse of the con-
tinuous phase at a constant velocity U, :

o Te=Te.  p, _2Ralo.
™-T, o
B=R/R, (8
and
+
t = JaPe} Fo, ﬁz(—{i) .
U,

Equation (5) reduces to
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Note that for a constant rise-velocity A = 1;
for a pure system not containing non-condens-
ables T* = T, and 6, = 1; for a single com-
ponent system, and if the potential flow field
assumption holds, k, = 1.

Integration of equation (7) requires explicit
expressions relating the instantaneous radius
to 6,, which depends on the inerts concentration
in the vapor and to A, the relative rise velocity.

A. PURE VAPORS
We begin with the simple case of pure vapors,
where T, = T* ie. the wall temperature is
identical with the saturation temperature, and
8, =1

1. Constant bubble velocity

For large bubbles (02 < Rg < 0-4cm) the
rise velocity is practically independent of the
radius [22, 23] and 4 = 1. Integration of
equation (7) yields:

3 (k,\*
=[-36) ] e

to = §(m/k)t (1 — B¥). (82)

The final dimensionless bubble diameter
B, = 0 for a single component system and the
dimensionless time for compiete condensation
7, = 1-182. For a two component system, where
the condensate accumulates within the confines
of the two-phase bubble, B, = (R,/R¢) = (p,/
pp* = G™* and 1, depends upon the vapor and
liquid densities of the volatile dispersed phase.
For the pentane-water system, for instance,
Gt =01684 and 7, = 2:912.

or

2. Radius-dependent rise velocity
For small bubbles, R, < 0-1 cm,

U,=C/Rem/s; Ry=R ©
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where U, denotes the radius-dependent free
rise velocity of the bubble and C = 1.74
[29(p. = p)/p.J* [23]. (Based on solid spheres,
Ruckenstein [20] suggested C = 6-6 [m¥/s] for
steam bubbles of all sizes in pure water)
Substituting U, for U in equations (5) and (6)
in the range R, > R, where at the limit (R = Ry)
Uy = C{/R, = const. yields 4 = (R/Ry)t = pt,
independent of the value of the constant C in
equation (9).
Equation (7) now becomes

-\
= _(f‘_"> _l_gw (10)
n) g
and integration with 6,, = 1, yields
5 (k, + 1%
or
7o = #n/k,)* (1 — BY). (11a)

Again, B, = 0 for a single component system
and t, = 1-418. For a two-component system,
B, = 1/G* and. for pentane-water system, 1, =
3-357. A comparison of equations (8) and (11)
for , = 0 is presented in Fig. 1(a).

B. UNPURE VAPORS

In the presence of non-condensables T,, # T*.
The partial pressure of the inert gas increases as
the bubble contracts, simultaneously reducing
the partial pressure of the vapors, until, as
T, - T, condensation stops and f = f,.

Integration of equation (7), accounting for the
inerts contents, requires explicit expressions
relating 0, to the inerts concentration and the
instantaneous radius of the bubble. Assuming an
homogeneous distribution within the bubble,
the initial inert concentration, y, (mole fraction).
is related to the final bubble radius, 5 by [15]:

RT*%y, l]*'

Br = [M += (12)

Gl G = pi/p,

where R is the gas constant. The term 1/G,
1ue to the accumulation of condensate within
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F1G. 1. Comparison of constant and radius dependent rise
velocity.

the confines of the ‘two-phase’ bubble. vanishes
for a single component system.

In terms of 8, and f, the dimensionless bubble-
wall temperature is given by [15]:

i

BW—B———————3_1/G

{13)

1. Constant rise velocity
Introducing (13) into (7) and integrating
yields a closed-form solution

T =14(f) + 7,(B, B

where 14(f) = 7, is given by equation (8a) and
74(B, B;), the correction term for the effect of
non-condensables, is given by

(14)
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. = (7Y B - /G
1 k: 3”
« 1o L= ADXBT + B
(1 + Bt - 8D
For a single phase bubble k, = 1 and 1/G = 0.

(13)

2. Radius-dependent rise-velocity
Introducing (13) into (10) yields

_(n\ B — 1O)
de = (k) = P

which can be integrated numerically. Figures
1(b) and 1{c) represent equation (14) and the
integrated equation (16) for f, = 02 and f, =
0-4, respectively, for a single component system
where 1/G =0 and k, = 1. As seen from the
figures, the effect of the variable velocity is
less pronounced as the inerts content increases.
This is to be expected since in this case the radius,
hence the velocity, changes relatively siower due
to the lower condensation rate.

(16)

EXTENSION TO SUBCOOLED FORCED-FLOW
BOILING

Abdelmessih et al. [11] have recently reported
data on the effect of fluid velocity on the growth
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and collapse of steam bubbles in slightly
subcooled distilled water, and attempted to
correlate some of the data, Fig. 2. with equation
(1). derived [8] for a stagnant bubble in a non-
flow system. Obviously, the effect of the relative
motion between the bubbles and the liquid must
be incorporated in order to obtain a better
agreement between experiment and theory.

We concern ourselves only with the collapse
period of his data (Fig. 2), and denote the maxi-
mum radii of the detached bubbles as R,

The effect of motion on the collapse rate is now
given by equation (5) or (7), where U is taken
to represent the relative velocity resulting from
the free-rise velocity and the normal fluid
velocity.

Since small bubbles are considered, equation
9) is assumed to apply to the rise velocity.
The horizontal component of the bubble velocity
is assumed to be identical with U, the normal
bulk fluid velocity. This is consistent with a
rough estimation of the horizontal velocity of
the bubbles shown in Fig. 3 of [11]. Thus, with
U, ~ /Rand U,, which corresponds to R,,, now
replacing U, in equation (6), the relative velocity
term, A, takes the form:

2
q= 2 TD D -wm+p ap

Radius, in. xIG°

Bubbie no. N,
[ Ro,
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FiG. 2. Effect of liquid velocity on bubble growth and
collapse at a heat flux of g/4 = 1-3 x 10% Btu/hft? {11}.
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where
VR == U l/ Um.

For the single component, steam-water, sys-
tem k, = 1 and equation (7), or (10), becomes

1 1
=~ - (Vi +B)* ﬁevr (18)
Or, introducing (13) with 1/G = 0:
% 3 _ 3
dr = ”‘/"(ﬁfvg)*ﬁ ﬂaﬁfdﬁ. (19)

The integrated values of equation (19) are
presented in Fig. 3 for a pure system (8, = 0)
and various values of Vg Although Fig. 3 is
quite general, the values of V; were chosen to
correspond to the specific experimental values
of U,.R,, (and U,,) presented in Fig. 2.

In order to compare equations (1) and (19)
with the experimental data, we utilize in Fig. 4
Abdelmessih et al.’s plot (Fig. 8, Ref [11]
with g rather than t as the abeissa. Note that
the four curves for V; # 0 in Fig. 3 (8 vs 1) are
approximately represented in Fig. 4 (8 vs t) by
a single curve. This is due to the fact that (for
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the same time!) 7/Pe? ~ const. for the system
studied, and the four curves practically converge
into a single one.

It is interesting to note that the data presented
in Fig 2 shows that

R, J(U} + UY) = R, U ., ~ const.:

U» U, 2U, 20)

This is generally consistent with the observa-
tions that the radius of the bubbles at detach-
ment is inversely proportional to the normal,
main stream, velocity to some power [23,24].
However, the effect of the main stream velocity
may have affected the relationship between the
detachment radius and its maximum growth
value, R, resulting with the relationship pre-
sented in by equation (20).

As already seen from Fig 1, the effect of
variable velocity as compared to constant
velocity motion is relatively small. This is
demonstrated again in Fig. 4, where the dotted
line represents 7, vs § calculated by equation (8)
with U = U, for each run. In this case we
define the Péclét number in equation (6) with
U sy Tather than with U, (or U,) and therefore
A =1 Since (U, R,) = const, the Péclét
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FiG. 3. Effect of main stream cross flow velocity on bubble
collapse.
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F1G. 4. Comparison of experimental data with theory.

number is now constant i.e. Pe,,, = 2R, U,/
a) = 5320 for all runs. Note that by defining the
Péclét number in this manner, and assuming
equation (20) to be universally true, we obtain
that the ‘universal’ single curve for § vs 7 derived
for the constant velocity (equation 8), (presented
as ¥; = 0 in Fig. 3) may be used to account for
the effect of the main bulk velocity too. If
non-condensables are present, one may use
equation (14) in a similar fashion.

Returning to Fig 4, one can see that the
theoretical approach used here fits the data
much better than the stagnant bubble solution
represented by eguation (1). In the range of
1 > B > 0-6, corresponding to some 80 per cent of
the possible (volumetric) condensation, we note
agreement with the pure vapor solution (8, = 0).
However, the agreement is better with the
solution of equation (19) with §, = 0-4, which
accounts for the presence of noncondensables in
the vapor. Although no information is available
as to the exact amount of air in this system [11],
small amounts of air (0-001-0-004 molar fraction)
may have been present. This is consistent with
our experience [16] with de-aerated pentane.

In spite of the good agreement between the
theory presented here and the experimental

data, some assumptions remain in doubt and
require further illumination. While the potential
flow-field assumption is well founded for rela-
tively large (R, > 0-1 mm) bubbles, it is com-
monly assumed that smaller bubbles behave as
solid spheres. The latter is, in a sense, the
justification for assuming the relationship given
in equation (17) for the resultant bubble
velocity. The apparent conceptual conflict may
nevertheless be resolved by reference to equation
(3), where k,, the velocity factor, is introduced to
“modify™ the potential flow field. This correc-
tion, incidentally. would raise the theoretical
curves for f, = 0 in Fig. 4, particularly in the
region of low B and thus improve the correlation.

However, one must note that equation (4)
was essentially applied for relatively large
bubbles, and a different expression for k,,
somewhat along the conceptual lines of the
velocity factor suggested by Conkie and Savic
[25], Griffith [26], Chao [27] or Lochiel and
Calderbank [28] may be more applicable. These
require the knowledge of the true bubble
velocity hence none were used here. It is also
possible that at this small size range U, ~ R"
where 2 > n > 1 rather than n = 4 used here.
However, since U, < U, the change will be
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relatively small. Neither of these ideas were
tested, particularly since we only attempted to
convey a general frame-work for the effect of
motion on bubble collapse.

CONCLUSION

A general framework for the effect of bubble
motion on the collapse rate has been suggested
for a single bubble of constant and variable rise
velocity, including the effect of cross flow. This
analysis can easily be extended to include the
effect of non-homogeneous distribution of non-
condensables within the bubble [29], and
following the outlines suggested elsewhere [17,
19] could most probably be applied to multi-
bubble systems.
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EFFET DU MOUVEMENT SUR LA DEGENERESCENCE D’UNE BULLE

Résumé—On analyse et compare les effets des vitesses de translation de la bulle, constantes ou dépendantes
du rayon, sur la vitesse de dégénérescence d'une bulle unique dans un systéme & un ou deux composants,
soit pur soit contenant des incondensables.

On analyse les effets combines de I'accroissement de vitesse de 1a bulle et de I'écoulement forcé principal
prés de la surface de I'cau 1égérement sous-refroidie. Les résultats sont en excellent accord avec les données
expérimentales connues pour la plupart des processus de condensation.

On explore quelques idées sur des améliorations ultéricures et on suggére un cadre général pour analyser

la dégénérescence de la bulle dans un champ d’écoulement.

DER EINFLUSS DER BEWEGUNG AUF DEN BLASENKOLLAPS

Zusammenfsssasg—Dic Einfliisse einer konstanten und radiusabhangigen translativen Blasenge-
schwindigkeit auf die Blasenkondensationsgeschwindigkeit werden untersucht und verglichen, fir Ein-und
Zweistoffsysteme, mit und ohne Anteil an nichtkondensierenden Bestandteilen. Vorausgesetzt wird ein
quasi-stationdres Potential- oder modifiziertes Potential-Stromungsfeid.

Es schiiesst sich auch cine versuchsweise Analyse der kombinierten Effekte von Blasenaufstiegsge-
schwindigkeitund Haupt-Querstrdmung bei Zwangskonvektion an fiir Siedeninleichtunterkithltem Wasser.
Die Ergebnisse stimmen sehr gut mit verfigbaren experimentellen Werten fiir den grossten Teil des
Kondensationsprozesses iiberein. Ideen fiir weitere Verbesserungen werden untersucht und ein aligemeines
Geriist zur theoretischen Untersuchung des Blasenkollapses in einem Stromungsfeld wird vorgeschiagen.

BJIUAHKE IBUMEHWA HA «CXJOilbIBAHUE» HY3bIPEN

Annmm—ﬁpnaonwrcn aHaJAu3 M CpaBHEHHMe BJIUAHUA MOCTOAHHON U 3aBHCHMMON OT
paanyca noc'ryna’re.nbnon CHOpOCTH nyssipellt Ha CKOPOCTb «CXJIOMWBAHMA» E€IMHHIHOrQ
NysHpA B OZHO- HJAM ABYXHKOMNOHEHTHHIX CHCTEMAaX, YHCTHX HAM CONCPHKAIMMX HEKOHACH-
cHpyomuecs 3J1€MeHTH . CocrosiHMe NOTeHIUAIbHOTO UIH MOIIH¢HIIMPOBEHHOPO MNOTeHIHAJ b~
HOTO NOJIA Te4eHHA NpPeanojaraeTCA KBASHCTANHOHAPHHIM. CroenaHa MOMHTKA NpOanaIu3n-
pOBaTh COBMECTHOe BIIMAHME CKOpPOCTM NOOBeMa NY3HpA ¥ OCHOBHOrO IIOTOKAa Ha mpounecc
KHIIEHN A CJIerKa Henorpe'roﬁ BOOK IpH BHHYHIECHHO! KOHBEKIMNH. Honyqennue pesyabTaTH
OTJIHYHO COrJaCyKTCA ¢ MMCIOMHMHCA 3KCHCPUMEHTAJNbHHMH NAHHHMU JJIA 6oapmMACTBA
MpoLeCCOB KOHMGHCALHU. PaapaGo'raHa MeTORIMKA JadbHelflero ycoBepIIeHCTBOBAHMA, U
npeanoKeHa ofman cxema aHaNM3a CXJONEBAHNA nyaupen B M0JIe TE4YeHUA.



